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Abstract. The dynamic structures of expanded liquid rubidium from the triple point to near the
critical point are investigated by means of a molecular-dynamics simulation with the effective
pair potential obtained from the experimental structure factor by the inverse method. The results
are discussed in comparison with the experimental data and also with those obtained with the
effective pair potential derived by means of the pseudopotential perturbation theory. It is shown
that the effective pair potential obtained from the static structure factor can reproduce fairly well
the dynamic structure factor for a wide range of density up to near the critical point.

1. Introduction

The structures of expanded liquid alkali metals such as rubidium and caesium have been
extensively investigated. These liquid metals show the metal–nonmetal (M–NM) transition,
when they are expanded from the triple point up to near the critical point. Since the interatomic
interaction of the expanded liquid alkali metal strongly depends on the density, attention has
been attracted to the density dependence of the structure of these liquid metals.

Owing to the recent progress in experimental techniques at high temperatures and high
pressures, the static structures of expanded liquid rubidium [1, 2] and caesium [3] for a wide
range of density have been investigated by means of neutron and x-ray scattering. As for
the dynamic properties, Pilgrim et al [4–7] have studied the dynamic structure factor of liquid
rubidium from near the triple point up to near the critical point by carrying out a neutron inelastic
scattering experiment and discussed the change of the dynamic structures with decreasing
density in connection with the M–NM transition.

There are also theoretical and molecular-dynamics (MD) studies on the expanded liquid
alkali metals with the effective pair potentials derived by means of the pseudopotential
perturbation theory. Hoshino et al [8–12] studied the density dependence of both the static
and the dynamic structures of expanded liquid alkali metals by using the integral equation
theory and the viscoelastic approximation. The characteristic features of the observed density
dependence of the structure are well reproduced from the triple point up to about three times the
critical density. As for the MD study, Kahl and Kambayashi [13, 14] calculated the dynamic
structures of expanded liquid rubidium. Their results are in good agreement with experimental
data except for the state at high temperature and low density near the critical point.
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In any studies with the effective pair potentials based on the pseudopotential perturbation
theory, the disagreement between the calculated structure and experimental one becomes larger
with increasing temperature and decreasing density. The reason for this is that, since the
pseudopotential theory is based on the nearly free-electron model, it is not valid at low density
where the M–NM transition occurs. At present, however, there is no theoretical method for
deriving the effective pair potential for such states.

On the other hand, Shimojo et al [15, 16] studied the structural and electronic properties
of expanded liquid rubidium by means of an ab initio MD simulation. They showed that
the static structures are in good agreement with experiments and that, while near the triple
point the electron density spreads over the whole space, at high temperature and low density
it tends to localize due to a large spatial fluctuation of the atomic density. Recently, González
et al [17] have studied the dynamic structure factors of expanded liquid rubidium by means
of a so-called orbital-free ab initio MD simulation. These days, ab initio MD simulations
are very powerful tools for studying structures of liquids. However, the system size and the
run time of the simulation are restricted, since the methods have an enormous computation
cost compared with that for classical MD simulations. Therefore, to study the long-time or
long-range correlation functions, the conventional MD simulation is still useful, provided that
a reliable interatomic potential is available.

The inverse method, in which the effective pair potential is derived from the experimental
static structure factor, is one of the best methods for obtaining the effective pair potential when
there is no reliable theoretical method. We derived the effective pair potentials of expanded
liquid rubidium [18] and caesium [19] using the predictor–corrector method [20, 21] for the
inverse method, and investigated their density dependence. It is obvious from the character of
this method that these effective pair potentials can reproduce the experimental static structure
factors accurately for any states. However, it is not evident that such an effective pair potential
can also reproduce the dynamic structure of expanded liquid metals. There are some examples
of this kind of study; Dzugutov and Dahlborg [22] studied the dynamic properties of liquid
bismuth near its melting point using the effective pair potential derived from the experimental
structure factor. In their method, the parametrized phenomenological form of the effective pair
potential was optimized iteratively so as to reproduce the experimental static structure factor.
They demonstrated that the results for the dynamic structure factors are in good agreement
with the experimental data. Recently we [23] studied the density dependence of the velocity
of sound in expanded liquid mercury with the effective pair potential obtained by the inverse
method and clarified the relation between the effective pair potential and the velocity of sound.

In this study [24] we investigate the dynamic structures of expanded liquid rubidium for
three states, at 350, 1700 and 1900 K, from the triple point up to near the critical point, by means
of a MD simulation using two kinds of effective pair potential, φps(r) and φ(r); φps(r) is the
one obtained from the pseudopotential perturbation theory using the HHWY pseudopotential
given by Hasegawa et al [25] and the local-field correction due to Ichimaru and Utsumi [26],
and φ(r) is the one derived from the experimental structure factor by the inverse method [18].
These effective pair potentials are shown in figure 1. The results for the dynamic properties
obtained by means of the MD simulation with φps(r) and φ(r) will be compared with each
other and also discussed in connection with the neutron inelastic experiments. At near the
triple point, 350 K, the dynamic properties obtained with φps(r) are in good agreement with
experimental data [11, 13, 14]. Since, however, there are some discrepancies between φps(r)

and φ(r), we investigate to what extent the difference between the effective pair potentials
affects the dynamic properties. The dynamic structures at 1700 and 1900 K are studied for the
following reasons. First, Kahl and Kambayashi [13] showed in their MD study that quantitative
discrepancies between the results obtained with φps(r) and the experiment are seen at higher
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Figure 1. The effective pair potentials multiplied by β = 1/kBT of expanded liquid rubidium at
350 K (solid line), 1700 K (broken line) and 1900 K (dashed line), derived by the inverse method
(thick lines) and from the pseudopotential theory (thin lines).

temperatures than 1673 K. Second, not only quantitative differences between them but also
qualitative discrepancies are found at 1873 K; Pilgrim et al [5–7] observed in their neutron
inelastic scattering experiment that a side peak emerges near 4.5 ps−1 for wavevectors around
1.0 Å−1 in the dynamic structure factor and attributed the side peak to a vibration mode of
a rubidium dimer. However, it is known that φps(r) cannot reproduce not only the dynamic
structure but also the static structure of this thermodynamic state especially in the small-k
region. Under these circumstances, it is interesting to study whether φ(r) can reproduce
the characteristic feature of the dynamic structure at high temperature and high pressure.
The purpose of this study is to investigate how the effective pair potential derived from the
experimental static structure factor can reproduce the experimental dynamic properties of
expanded liquid rubidium for a wide range of density, in particular, at high temperature and
high pressure near the critical point.

2. Method of calculation

For convenience, the definitions of some space-time correlation functions are briefly
summarized [27]. The intermediate-scattering function F(k, t) is defined as the space Fourier
transform of the Van Hove correlation function G(r, t):

F(k, t) =
∫

dr exp(−ik · r)G(r, t) (1)

or

F(k, t) = 1

N
〈nk(t)n−k(0)〉 (2)
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where

nk(t) =
N∑

j=1

exp(ik · rj (t)) (3)

is the Fourier transform of the density operator, 〈· · ·〉 means thermal average and N is the
number of atoms. The dynamic structure factor S(k, ω) is given as

S(k, ω) =
∫

dt exp(−iωt)F (k, t). (4)

S(k, ω) gives the frequency spectrum of the correlation between density fluctuations of a given
wavevector. We note that

1

2π

∫
dω S(k, ω) = F(k, 0) = S(k) (5)

is the static structure factor. The self-diffusion coefficient D is obtained from the relation

D = 1

6t

〈
r2(t)

〉
(6)

where
〈
r2(t)

〉
is the mean square displacement (MSD) of atoms. This expression for D,

which is a time-independent quantity, should be applied to the time region where
〈
r2(t)

〉
varies linearly with t . In a fluid system, the linear behaviour in

〈
r2(t)

〉
is obtained at much

longer time compared with the characteristic time of correlation between the tagged atom
and its immediate neighbours. Therefore equation (6) is valid only for large t . The velocity
autocorrelation function Z(t) is defined by

Z(t) = 1

N

N∑
j=1

〈vj (t) · vj (0)〉 (7)

where vj (t) is the velocity of the j th atom at time t .
The constant-temperature MD simulation [28] is performed with periodic boundary

conditions. The equations of motion are integrated by the velocity Verlet algorithm. We
take 512 atoms in a cubic cell with a side of L for all states and also employ 8000 atoms for
the state at the temperature of 1900 K to obtain the long-range correlation functions. The
simulation is carried out for 110 000 time steps with the increment of time �t = 4.8 fs.
The dynamic properties are obtained using the data for 100 000 steps, i.e. 480 ps, after the
equilibrium is reached. The cut-off distance of the effective pair potential is given in table 1.
To avoid the truncation error in the Fourier transform, F(k, t) is calculated not from equation
(1) but from equation (2). The dynamic structure factor S(k, ω) is calculated by the Fourier

Table 1. Correspondence between experiments and the present study. The cut-off distances rc for
the effective pair potentials φ(r) and φps(r) employed in our simulation are also shown.

Present study

Experiment rc (Å)

T (K) ρ (g cm−3) Reference T (K) ρ (g cm−3) φ(r) φps(r)

315, 320 — [30, 31] 350 1.459 14.0 17.0
1673 0.830 [4] 1700 0.798 14.0 14.0
1873 0.640 [4] 1900 0.642 18.0 18.0
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transformation of F(k, t) as defined by equation (4). The wavevector k is restricted by the
periodic boundary condition as

k = |k| =
∣∣∣∣2π

L
(n1, n2, n3)

∣∣∣∣ (8)

where n1, n2, n3 are integers. When F(k, t) or S(k, ω) is calculated, the average is taken over
all equivalent possible vectors k with k = |k|.

3. Results and discussion

3.1. Static structure factors

The static structure factor is calculated by the Fourier transformation of the extrapolated g(r);
since g(r) available from the MD simulation is limited to r < L/2, g(r) is extrapolated beyond
r = L/2 by Verlet’s extrapolation method [29]. In figure 2, thus-obtained and experimental
structure factors S(k) of liquid rubidium at 350, 1700 and 1900 K are shown. The solid and
the dashed lines show the results obtained from the MD simulation with φ(r) and φps(r),
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Figure 2. The static structure factors of expanded liquid rubidium at 350 K (a), 1700 K (b) and
1900 K (c). The solid and dashed lines show the results obtained from the MD simulation with
φ(r) and φps(r), respectively. The dots show the experimental data. The open circle is the value
of S(0) estimated from the observed isothermal compressibility. The arrows show the wavevectors
where the dynamic correlation functions are studied in the present paper.
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respectively, and the dots show the neutron scattering data [1]. For closer comparison, S(k) in
the small-k region is also shown in figure 2(a). At 350 K, the value of S(0) estimated from the
experimental isothermal compressibility χT , which is shown by the open circle in figure 2(a),
is about 0.02. If the original structure data are smoothed, however, the resulting line gives the
larger value of S(0) � 0.05. Thus, since the experimental structure data in the small-k region
are inconsistent with the observed χT , the data in such k-regions are not reliable. For this
reason, though S(k) obtained with φps(r) disagrees with the experimental data in the region
of k less than the value for the first peak kp, we cannot judge which effective pair potential is
better without more accurate experimental data.

The structure factors S(k) at 1700 K are shown in figure 2(b). The S(k) obtained with
φ(r) agrees with the experiment for all k-values. On the other hand, some discrepancies are
seen for the S(k) obtained with φps(r) in the region of k less than the value for the first peak
position.

The static structure factors S(k) at 1900 K are compared in figure 2(c). Since the exp-
erimental data are substantially scattered, we cannot say that for k > 1.2 Å−1 the solid line
is in better agreement with the experiment than the dashed one. On the other hand, for the
regions k ∼ 1.0 Å−1 and k < 0.5 Å−1 we can see that S(k) obtained with φ(r) agrees with
the experiment much better than that obtained with φps(r) does.

In the following, the dynamic structures for k-values shown by the arrows in figure 2 are
studied.

3.2. Intermediate-scattering functions

The normalized intermediate-scattering functions F(k, t)/F (k, 0) at 350, 1700 and 1900 K
are shown in figures 3, 4 and 5, respectively. The solid and the dashed lines are the results
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Figure 3. The normalized intermediate-scattering
functions F(k, t)/F (k, 0) for six wavevectors at
350 K. The solid and dashed lines are the results
obtained with φ(r) and φps(r), respectively.
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Figure 4. The normalized intermediate-scattering functions F(k, t)/F (k, 0) for four wavevectors
at 1700 K. The solid and dashed lines are the results obtained with φ(r) and φps(r), respectively.
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Figure 5. The normalized intermediate-scattering functions F(k, t)/F (k, 0) for three wavevectors
at 1900 K. The solid and dashed lines are the results obtained with φ(r) and φps(r), respectively.

obtained from φ(r) and φps(r), respectively.
At 350 K, the F(k, t)/F (k, 0) for 0.3 � k � 5.5 Å−1 are calculated with φ(r) and φps(r)

and six of them are shown in figure 3. F(k, t) for k-values less than 1.2 Å−1 damps with
clear oscillating behaviour. With increasing k, the oscillation tends to damp and F(k, t) for
k � 1.5 Å−1 decreases monotonically. Because of the strong spatial correlation in the vicinity
of kp (∼1.5 Å−1), F(k, t) decays very slowly at these wavelengths and this behaviour is known
as the de Gennes slowing down [32]. Comparing the results obtained with φ(r) and φps(r),
we can see that the period of the oscillation for small k is very sensitive to the effective pair
potential. Even if there is little discrepancy between two static structure factors S(k) in a small-
k region, F(k, t) in this k-region shows distinctly different behaviours. For the large-k region,
though the behaviours of the two F(k, t) are similar, F(k, t) obtained with φps(r) decays more
slowly than that obtained with φ(r). This is because the spatial correlation for the system of
atoms interacting with φps(r) is stronger than that for the system interacting with φ(r).

Figure 4 shows F(k, t)/F (k, 0) at 1700 K for four wavevectors. For k = 0.70 Å−1, F(k, t)
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calculated with φ(r) oscillates and takes negative values at short time, while F(k, t) calculated
with φps(r) decays monotonically. In contrast, for k = 1.00 Å−1, F(k, t) calculated with φps(r)

shows oscillating behaviour, while F(k, t) calculated with φ(r) decreases monotonically. For
the other wavevectors, the F(k, t) calculated with φ(r) and φps(r) agree with each other very
well. For those k-vectors where the S(k) calculated with φ(r) and φps(r) agree with each
other, a good agreement is also achieved for F(k, t).

In figure 5 the F(k, t)/F (k, 0) at 1900 K for k = 1.00, 1.30 and 1.50 Å−1 are shown. It
is reported that the observed S(k, ω) at 1900 K for k = 1.0 Å−1 has a peak. Though, in that
case, the corresponding F(k, t) is expected to have some oscillating behaviours, our results
do not oscillate, but decay monotonically.

3.3. Dynamic structure factors

The dynamic structure factors at 350, 1700 and 1900 K are calculated from the Fourier
transforms of F(k, t) shown in figures 3, 4 and 5, respectively. In figure 6 we show the
results at 350 K and the neutron inelastic scattering data observed at 315 K and 320 K by
Copley and Rowe [30, 31]. For k � 1.2 Å−1 clear peaks at finite ω in S(k, ω) are seen,
while for k � 1.3 Å−1 no such peak is found. For k = 1.30 Å−1, S(k, ω) for φ(r) decreases
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Figure 6. Dynamic structure factors S(k, ω) at 350 K for the six wavevectors obtained by the
Fourier transformation of F(k, t) in figure 3. The solid and dashed lines are the results obtained
with φ(r) and φps(r), respectively. The dots are the neutron inelastic scattering results at 315 and
320 K [30, 31].
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monotonically while S(k, ω) for φps(r) has a shoulder around 3.5 ps−1. S(k, ω) in the vicinity
of kp has an extremely sharp peak at ω = 0. This behaviour corresponds to the de Gennes
narrowing. In the same way as for F(k, t), for the small-k region the two S(k, ω) obtained
with φ(r) and φps(r) show different behaviours. For k = 0.59 Å−1 the dashed line is in better
agreement with the experiment. This is because, as mentioned above, the experimental static
structure factors used as the input data in the inverse method do not have good accuracy in
such k-regions. Such a small error in the small-k region has a substantial effect on the effective
pair potential, and the resultant dynamic structure for small k disagrees with experiment. For
k = 1.00 Å−1 both the solid and dashed lines disagree with the experimental result. For
k = 1.25 Å−1 the solid line is in better agreement with experiment than the dashed line is.
For this k, S(k) obtained with φps(r) disagrees with the experiment. For a larger k, since the
errors in the experimental static structure factor are not so serious as that for small k, the two
lines show similar behaviours and agree reasonably well with experiments.

In figure 7 we show the dynamic structure factors S(k, ω) at 1700 K. In the same way
as for F(k, t), relatively large discrepancies between S(k, ω) obtained with φ(r) and that
obtained with φps(r) are seen at the wavevectors k = 0.70 and 1.00 Å−1 where S(k) obtained
with φps(r) and that obtained with φ(r) disagree with each other. These disagreements can
be understood from the sum rule for S(k, ω) given by equation (5); the larger the S(k) is for
a given k, the larger the S(k, ω) is in the small-ω region. For this thermodynamic state, no
side peak is seen for all k-values studied in the present system, while, at 350 K near the triple
point, a clear peak at a finite value of ω as well as a sharp peak at ω = 0 can be seen for
up to about 1.20 Å−1. The experimental dynamic structure factor obtained with the inelastic
neutron scattering at 1673 K for k = 1.0 Å−1 [4, 5] is shown in figure 7. Compared with the
experimental data, S(k, ω) obtained with φps(r) is small near ω = 0. This is because S(k)

obtained with φps(r) for k = 1.00 Å−1 is smaller than the experimental static structure factor.
On the other hand, S(k, ω) obtained with φ(r) is in excellent agreement with the experiment
for the whole ω-region.
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Figure 7. Dynamic structure factors S(k, ω) at 1700 K for the four wavevectors obtained by the
Fourier transformation of F(k, t) in figure 4. The dots are the neutron inelastic scattering results
at 1673 K [4].
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In figure 8, the S(k, ω) at 1900 K for k = 1.00, 1.30 and 1.50 Å−1 are shown. For
comparison, the experimental dynamic structure factors obtained by Winter et al [6] at 1873 K
for k = 1.0 Å−1 and k = 1.5 Å−1 are also shown. Comparing with the experimental results
for k = 1.0 Å−1, we can see that the MD simulation with φ(r) reproduces the values of
S(k, ω) around ω = 0 and ω > 5 ps−1 fairly well. On the other hand, the values of S(k, ω)

calculated with φps(r) are smaller than the experimental results in the low-ω region. The
S(k, ω) obtained from the MD simulation with φ(r) does not show the peak around 4.5 ps−1,
which was observed experimentally, but decays monotonically. Next we compare S(k, ω) for
k = 1.50 Å−1 with experimental data. For this k-value the dashed line is in better agreement
with experimental data around ω = 0. This can be understood as follows. Since, as shown
in figure 2, the experimental static structure factor is scattered substantially, both the solid
and dashed lines seem to agree with the experimental data within the experimental error at
k = 1.5 Å−1. However, the dashed line must be in better agreement with the ‘real’ static
structure factor than the solid one is.
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Figure 8. Dynamic structure factors S(k, ω) at 1900 K for the three wavevectors obtained by the
Fourier transformation of F(k, t) in figure 5. The dots are the neutron inelastic scattering results
at 1873 K [4].

As for the side peak of S(k, ω) for k = 1.0 Å−1, Pilgrim et al interpret it as the vibration
mode of a dimer [7]. If this is the case, it is necessary to take account of several kinds of
interaction: the inter-dimeric, intra-dimeric, ion–dimer and ion–ion interactions. In such a
system, the pseudopotential perturbation theory and the pairwise-additive approximation may
not work well. On the other hand, the effective pair potential derived from the experimental
structure factor is an ‘effective’ pair potential, in the sense that it includes all kinds of
interactions existing in a real liquid system. Therefore when a dimer exists in a liquid, the
effective pair potential includes such interactions effectively. However, since the data for
the experimental static structure factor S(k) at 1900 K are scattered and no distinct structure
implying the existence of a dimer is seen in S(k), φ(r) shows little effect from a dimer, if any.
To investigate whether an effective pair potential can reproduce the side peak in S(k, ω) near
the critical point or not, more accurate experimental static structure data, which are used as
input data in the inverse method, are necessary.

3.4. Dynamic structure for the long-wavelength region

To study the dynamic structure for a small-k region at 1900 K, we perform the MD simulation
with a larger system of 8000 atoms. In this system the smallest wavenumber is 0.052 Å−1.
Though there are no experimental data on S(k, ω) for such a small-k region, it is considered
that φps(r) cannot reproduce the real S(k, ω) because it fails to reproduce even the static
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structure factor for these k-values. Therefore we show the results for F(k, t) and S(k, ω)

obtained with only φ(r) in figures 9(a) and 9(b), respectively. The interesting feature is that,
for k = 0.090 Å−1, F(k, t) shows oscillatory behaviour and the corresponding peak is seen in
S(k, ω) at ω = 0.4 ps−1, while F(k, t) shown in figure 5 decays monotonically and S(k, ω)

shown in figure 8 has no side peak. These features become more distinct for k = 0.052 Å−1

and the clearer side peak around ω = 0.2 ps−1 is seen in S(k, ω). This means that there
exists a propagating density fluctuation with k-values smaller than about 0.1 Å−1 in the liquid
rubidium at 1900 K.
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Figure 9. The normalized intermediate-scattering functions F(k, t)/F (k, 0) and the dynamic
structure factors S(k, ω) at 1900 K for small k-values. These results are obtained with φ(r) from
the MD simulation for the system of 8000 atoms.

3.5. Mean square displacements

The results for the MSD are shown in figure 10. The solid and the dashed lines are obtained
with φ(r) and φps(r), respectively. For comparison, the result calculated from an ab initio MD
simulation by Shimojo et al [15] is also shown in figure 10(a) as the dashed-and-dotted line.
It can be seen from figure 10(a) that the MSD is very sensitive to the effective pair potential.
From the gradient of the MSD for t � 1 ps, where the MSD shows linear behaviour, the
self-diffusion coefficients D are calculated. The values of D thus obtained for the systems
with φ(r) and φps(r) are 3.4 × 10−5 and 2.1 × 10−5 cm2 s−1, respectively. The experimental
values are 2.5–3.8 × 10−5 cm2 s−1 [33] and the result from the ab initio MD simulation [15]
is 2.5 × 10−5 cm2 s−1. Though the value of D obtained with φ(r) seems to be in the range of
these experimental data, since a measured D for a liquid system has, in general, uncertainties
arising from the convection, we should discuss the result for D obtained with the calculations
rather than with the experimental data. The value of D obtained with φ(r) is larger than D

obtained with φps(r) and the result from the ab initio MD. The reason for this is as follows.
As we have pointed out, χT for the system of atoms interacting with φ(r) is larger than that of
the real system. As a consequence, the position of the repulsive part of φ(r) is shifted further
inside than that of φps(r). That is, the effective core radius of φ(r) is too small and, as a result,
the diffusion coefficient is large.

The MSD at 1700 K calculated with φ(r) and φps(r) are shown in figure 10(b). The
agreement between the two curves is very good. Both curves show the linear behaviour for
t � 2 ps. The self-diffusion coefficients D estimated from the gradient of the MSD are 8.3
and 7.9 × 10−4 cm2 s−1, for φ(r) and φps(r), respectively.

In figure 10(c), the MSD at 1900 K are shown. Unlike the case with the temperature
of 1700 K, the two lines obtained with φ(r) and φps(r) at 1900 K differ substantially. This
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Figure 10. The mean square displacement (MSD) of atoms at (a) 350 K, (b) 1700 K and (c) 1900 K.
The solid and dashed lines show the results obtained with φ(r) and φps(r), respectively. The results
from the ab initio MD simulation [15] are also shown, as the dashed-and-dotted line in (a).

difference between the two lines comes from the softness of the repulsive part of φ(r) as seen
in figure 1. The diffusion coefficients estimated from the gradient of the MSD are 2.2 × 10−3

and 1.1 × 10−3 cm2 s−1, respectively.

3.6. Velocity autocorrelation functions

The normalized velocity autocorrelation functions Z(t)/Z(0) are shown in figure 11. The
solid and the dashed lines are obtained with φ(r) and φps(r), respectively. The result from the
ab initio MD simulation [15] is also shown as the dashed-and-dotted line at 350 K. At 350 K
these curves damp with oscillation around zero. The negative value of Z(t) implies a high
probability of a large-angle deflection in its motion; near the triple point, since a tagged ion is
enclosed in a cage formed by its neighbour ions, the ion cannot diffuse easily but vibrates in
the cage for a relatively long time. Because of the stronger spatial correlation in the system of
φps(r) than that in the system of φ(r), the period of the oscillation in Z(t) for φps(r) is shorter
than that for φ(r).

At 1700 K the agreement between the two curves is very good. In this thermodynamic
state, Z(t) does not oscillate but decays monotonically and does not take negative values. This
means that the cage effect does not exist and ions can propagate over larger distances without
any collision.
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Figure 11. The velocity autocorrelation function at (a) 350 K, (b) 1700 K and (c) 1900 K. The
solid and dashed lines show the results obtained with φ(r) and φps(r), respectively. The results
from the ab initio MD simulation [15] are also shown, as the dashed-and-dotted line in (a).

At 1900 K, unlike the case at the temperature of 1700 K, the two lines differ substantially
from each other. The solid line for Z(t) decays much more slowly than the dashed one. These
differences come from the softness of the repulsive part of φ(r).

4. Summary

In this paper, we have investigated the dynamic structure of expanded liquid rubidium by
means of MD simulation using two kinds of effective pair potential, φ(r) and φps(r), where
φ(r) is derived from the experimental static structure factor by the inverse method and φps(r)

is obtained from the pseudopotential perturbation theory.
It is found that, near the triple point, the dynamic properties for a small k are very sensitive

to the effective pair potential. Therefore it is difficult to reproduce the experimental dynamic
properties by MD simulation with the same accuracy as for the static structure factor in such a
k-region. It is expected, however, that if more accurate experimental static structure data were
available, a more accurate dynamic structure could be obtained by our method.

At the temperature of 1700 K, the dynamic structure factors S(k, ω) obtained with φ(r)

can reproduce the experimental data very well. On the other hand, even if S(k) calculated with
φps(r) deviates from experiment only slightly for a particular k-value, a distinct discrepancy
is seen as regards the dynamic correlation functions.

Near the critical point at 1900 K, though the side peak observed in S(k, ω) for k = 1.0 Å−1

is not reproduced in the present calculation, S(k, ω) obtained with φ(r) is in fairly good
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agreement with the experimental dynamic structure factor. We show for the first time that the
propagating density fluctuations exist for k-values smaller than about 0.1 Å−1 at 1900 K.

We conclude that the effective pair potentials derived from observed static structure factors
of liquid rubidium with high accuracy can reproduce the dynamic structures very well from
the triple point up to near the critical point.
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